

LZ4 compression library bindings for Python

Contents

	Introduction

	Install
	Installing from pre-built wheels

	Installing from source

	Test suite

	Documentation

	Quickstart
	Simple usage

	Working with data in chunks

	Working with compressed files

	Controlling the compression

	Working with streamed compressed data

	User Guide
	lz4 package

	lz4.frame sub-package

	lz4.block sub-package

	lz4.stream sub-package

	Contributors

	Licensing

Indices

	Index

	Module Index

	Search Page

Introduction

This package provides a Python interface for the LZ4 compression library [http://lz4.github.io/lz4/] by Yann Collet. Support is provided for Python 2
(from 2.7 onwards) and Python 3 (from 3.4 onwards).

The LZ4 library provides support for three specifications:

	The frame [http://lz4.github.io/lz4/lz4_Frame_format.html] format

	The block [http://lz4.github.io/lz4/lz4_Block_format.html] format

	The stream [https://github.com/lz4/lz4/wiki/LZ4-Streaming-API-Basics] format

This Python interface currently supports the frame, block and double-buffer
stream formats.

For most applications, the frame format is what you should use as this
guarantees interoperability with other bindings. The frame format defines a
standard container for the compressed data. In the frame format, the data is
compressed into a sequence of blocks. The frame format defines a frame header,
which contains information about the compressed data such as its size, and
defines a standard end of frame marker.

The API provided by the frame format bindings follows that of the LZMA, zlib,
gzip and bzip2 compression libraries which are provided with the Python standard
library. As such, these LZ4 bindings should provide a drop-in alternative to the
compression libraries shipped with Python. The package provides context managers
and file handler support.

The bindings drop the GIL when calling in to the underlying LZ4 library, and is
thread safe. An extensive test suite is included.

Install

The bindings to the LZ4 compression library provided by this package are in the
form of a Python extension module written in C. These extension modules need to
be compiled against the LZ4 library and the Python

Installing from pre-built wheels

The package is hosted on PyPI [https://pypi.org/project/lz4/] and pre-built
wheels are available for Linux, OSX and Windows. Installation using a pre-built
wheel can be achieved by:

$ pip install lz4

Installing from source

The LZ4 bindings require linking to the LZ4 library, and so if there is not a
pre-compiled wheel available for your platform you will need to have a suitable
C compiler available, as well as the Python development header files. On
Debian/Ubuntu based systems the header files for Python are found in the
distribution package pythonX.Y-dev e.g. python3.7-dev. On Fedora/Red Hat
based systems, the Python header files are found in the distribution package
python-devel.

The LZ4 library bindings provided by this package require the LZ4 library. If
the system already has an LZ4 library and development header files present, and
the library is a recent enough version the package will build against that.
Otherwise, the package will use a bundled version of the library files to link
against. The package currently requires LZ4 version 1.7.5 or later.

On a system for which there are no pre-built wheels available on PyPi, running
this command will result in the extension modules being compiled from source:

$ pip install lz4

On systems for which pre-built wheels are available, the following command will
force a local compilation of the extension modules from source:

$ pip install --no-binary --no-cache-dir lz4

The package can also be installed manually from a checkout of the source code
git repository:

$ python setup.py install

Several packages need to be present on the system ahead of running this command.
They can be installed using pip:

$ pip install -r requirements.txt

Test suite

The package includes an extensive test suite that can be run using:

$ python setup.py test

or, preferably, via tox:

$ tox

Documentation

The package also includes documentation in the docs directory. The
documentation is built using Sphinx [http://www.sphinx-doc.org/en/stable/],
and can be built using the included Makefile:

$ cd docs
$ make html

To see other documentation targets that are available use the command make help.

Quickstart

Simple usage

The recommended binding to use is the LZ4 frame format binding, since this
provides interoperability with other implementations and language bindings.

The simplest way to use the frame bindings is via the compress() and
decompress() functions:

>>> import os
>>> import lz4.frame
>>> input_data = 20 * 128 * os.urandom(1024) # Read 20 * 128kb
>>> compressed = lz4.frame.compress(input_data)
>>> decompressed = lz4.frame.decompress(compressed)
>>> decompressed == input_data
True

The compress() function reads the input data and compresses it and
returns a LZ4 frame. A frame consists of a header, and a sequence of blocks of
compressed data, and a frame end marker (and optionally a checksum of the
uncompressed data). The decompress() function takes a full LZ4 frame,
decompresses it (and optionally verifies the uncompressed data against the
stored checksum), and returns the uncompressed data.

Working with data in chunks

It’s often inconvenient to hold the full data in memory, and so functions are
also provided to compress and decompress data in chunks:

>>> import lz4.frame
>>> import os
>>> input_data = 20 * 128 * os.urandom(1024)
>>> c_context = lz4.frame.create_compression_context()
>>> compressed = lz4.frame.compress_begin(c_context)
>>> compressed += lz4.frame.compress_chunk(c_context, input_data[:10 * 128 * 1024])
>>> compressed += lz4.frame.compress_chunk(c_context, input_data[10 * 128 * 1024:])
>>> compressed += lz4.frame.compress_flush(c_context)

Here a compression context is first created which is used to maintain state
across calls to the LZ4 library. This is an opaque PyCapsule object.
compress_begin() starts a new frame and returns the frame header.
compress_chunk() compresses input data and returns the compressed data.
compress_flush() ends the frame and returns the frame end marker. The
data returned from these functions is catenated to form the compressed frame.

compress_flush() also flushes any buffered data; by default,
compress_chunk() may buffer data until a block is full. This buffering
can be disabled by specifying auto_flush=True when calling
compress_begin(). Alternatively, the LZ4 buffers can be flushed at any
time without ending the frame by calling compress_flush() with
end_frame=False.

Decompressing data can also be done in a chunked fashion:

>>> d_context = lz4.frame.create_decompression_context()
>>> d1, b, e = lz4.frame.decompress_chunk(d_context, compressed[:len(compressed)//2])
>>> d2, b, e = lz4.frame.decompress_chunk(d_context, compressed[len(compressed)//2:])
>>> d1 + d2 == input_data
True

Note that decompress_chunk() returns a tuple (decompressed_data,
bytes_read, end_of_frame_indicator). decompressed_data is the decompressed
data, bytes_read reports the number of bytes read from the compressed input.
end_of_frame_indicator is True if the end-of-frame marker is encountered
during the decompression, and False otherwise. If the end-of-frame marker is
encountered in the input, no attempt is made to decompress the data after the
marker.

Rather than managing compression and decompression context objects manually, it
is more convenient to use the LZ4FrameCompressor and
LZ4FrameDecompressor classes which provide context manager
functionality:

>>> import lz4.frame
>>> import os
>>> input_data = 20 * 128 * os.urandom(1024)
>>> with lz4.frame.LZ4FrameCompressor() as compressor:
... compressed = compressor.begin()
... compressed += compressor.compress(input_data[:10 * 128 * 1024])
... compressed += compressor.compress(input_data[10 * 128 * 1024:])
... compressed += compressor.flush()
>>> with lz4.frame.LZ4FrameDecompressor() as decompressor:
... decompressed = decompressor.decompress(compressed[:len(compressed)//2])
... decompressed += decompressor.decompress(compressed[len(compressed)//2:])
>>> decompressed == input_data
True

Working with compressed files

The frame bindings provide capability for working with files containing LZ4
frame compressed data. This functionality is intended to be a drop in
replacement for that offered in the Python standard library for bz2, gzip and
LZMA compressed files. The lz4.frame.open() function is the most
convenient way to work with compressed data files:

>>> import lz4.frame
>>> import os
>>> input_data = 20 * os.urandom(1024)
>>> with lz4.frame.open('testfile', mode='wb') as fp:
... bytes_written = fp.write(input_data)
... bytes_written == len(input_data)
True
>>> with lz4.frame.open('testfile', mode='r') as fp:
... output_data = fp.read()
>>> output_data == input_data
True

The library also provides the class lz4.frame.LZ4FrameFile for
working with compressed files.

Controlling the compression

Beyond the basic usage described above, there are a number of keyword arguments
to tune and control the compression. A few of the key ones are listed below,
please see the documentation for full details of options.

Controlling the compression level

The compression_level argument specifies the level of compression used with
0 (default) being the lowest compression (0-2 are the same value), and 16 the
highest compression. Values below 0 will enable “fast acceleration”,
proportional to the value. Values above 16 will be treated as 16. The following
module constants are provided as a convenience:

	lz4.frame.COMPRESSIONLEVEL_MIN: Minimum compression (0, default)

	lz4.frame.COMPRESSIONLEVEL_MINHC: Minimum high-compression mode (3)

	lz4.frame.COMPRESSIONLEVEL_MAX: Maximum compression (16)

Availability: lz4.frame.compress(),
lz4.frame.compress_begin(), lz4.frame.open(),
lz4.frame.LZ4FrameCompressor, lz4.frame.LZ4FrameFile.

Controlling the block size

The block_size argument specifies the maximum block size to use for the
blocks in a frame. Options:

	lz4.frame.BLOCKSIZE_DEFAULT or 0: the lz4 library default

	lz4.frame.BLOCKSIZE_MAX64KB or 4: 64 kB

	lz4.frame.BLOCKSIZE_MAX256KB or 5: 256 kB

	lz4.frame.BLOCKSIZE_MAX1MB or 6: 1 MB

	lz4.frame.BLOCKSIZE_MAX4MB or 7: 4 MB

If unspecified, will default to lz4.frame.BLOCKSIZE_DEFAULT which is
currently equal to lz4.frame.BLOCKSIZE_MAX64KB

Availability: lz4.frame.compress(),
lz4.frame.compress_begin(), lz4.frame.open(),
lz4.frame.LZ4FrameCompressor, lz4.frame.LZ4FrameFile.

Controlling block linking

The block_linked argument specifies whether to use block-linked compression.
If True, the compression process will use data between sequential blocks to
improve the compression ratio, particularly for small blocks. The default is
True.

Availability: lz4.frame.compress(),
lz4.frame.compress_begin(), lz4.frame.open(),
lz4.frame.LZ4FrameCompressor, lz4.frame.LZ4FrameFile.

Data checksum validation

The content_checksum argument specifies whether to enable checksumming of
the uncompressed content. If True, a checksum of the uncompressed data is
stored at the end of the frame, and checked during decompression. Default is
False.

The block_checksum argument specifies whether to enable checksumming of the
uncompressed content of each individual block in the frame. If True, a
checksum is stored at the end of each block in the frame, and checked during
decompression. Default is False.

Availability: lz4.frame.compress(),
lz4.frame.compress_begin(), lz4.frame.open(),
lz4.frame.LZ4FrameCompressor, lz4.frame.LZ4FrameFile.

Data buffering

The LZ4 library can be set to buffer data internally until a block is filed in
order to optimize compression. The auto_flush argument specifies whether the
library should buffer input data or not.

When auto_flush is False the LZ4 library may buffer data internally. In
this case, the compression functions may return no compressed data when called.
This is the default.

When auto_flush is True, the compression functions will return
compressed data immediately.

Availability: lz4.frame.compress(),
lz4.frame.compress_begin(), lz4.frame.open(),
lz4.frame.LZ4FrameCompressor, lz4.frame.LZ4FrameFile.

Storing the uncompressed source data size in the frame

The store_size and source_size arguments allow for storing the size of
the uncompressed data in the frame header. Storing the source size in the frame
header adds an extra 8 bytes to the size of the compressed frame, but allows the
decompression functions to better size memory buffers during decompression.

If store_size is True the size of the uncompressed data will be stored in
the frame header. Default is True.

Availability of store_size: lz4.frame.compress()

The source_size argument optionally specifies the uncompressed size of the
source data to be compressed. If specified, the size will be stored in the frame
header.

Availability of source_size: lz4.frame.LZ4FrameCompressor.begin(),
lz4.frame.compress_begin(), lz4.frame.open(),
lz4.frame.LZ4FrameFile.

Working with streamed compressed data

The stream bindings provide capability for working with stream compressed LZ4
data. This functionality is based on the usage of a ring-buffer (not implemented
yet) or a double-buffer, with the length of each block preceding the compressed
payload in the stream.

The stream compression reuses a context between each processed block for
performance gain.

Most of the arguments used to initialize the LZ4 stream context are shared with
the block API. Hereafter, those specific to the LZ4 stream API are detailed.

Controlling the buffer size

The buffer_size argument represents the base buffer size used internally for
memory allocation:

	In the case of the double-buffer strategy, this is the size of each buffer of
the double-buffer.

When compressing, this size is the maximal length of the input uncompressed
chunks.

When decompressing, this size is the maximal length of the decompressed data.

Storing the compressed data size in the block

The store_comp_size argument allows tuning of the size (in bytes) of the
compressed block, which is prepended to the actual LZ4 compressed payload.
This size can be either on 1, 2 or 4 bytes, or 0 for out-of-band
block size record.

User Guide

	lz4 package
	Contents

	lz4.frame sub-package
	Low level bindings for full content (de)compression

	Low level bindings for chunked content (de)compression

	Retrieving frame information

	Helper context manager classes

	Reading and writing compressed files

	Module attributes

	lz4.block sub-package
	Example usage

	Contents

	lz4.stream sub-package
	Example usage

	Out-of-band block size record example

	Contents

lz4 package

Most of the functionality of this package is found in the lz4.frame,
the lz4.block and the lz4.stream sub-packages.

Contents

	
lz4.library_version_number()

	Returns the version number of the LZ4 library.

	Parameters

	None –

	Returns

	version number eg. 10705

	Return type

	int

	
lz4.library_version_string()

	Returns the version number of the LZ4 library as a string
containing the semantic version.

	Parameters

	None –

	Returns

	version number eg. “1.7.5”

	Return type

	str

lz4.frame sub-package

This sub-package is in beta testing. Ahead of version 1.0 there may be API
changes, but these are expected to be minimal, if any.

This sub-package provides the capability to compress and decompress data using
the LZ4 frame specification [http://lz4.github.io/lz4/lz4_Frame_format.html].

The frame specification is recommended for most applications. A key benefit of
using the frame specification (compared to the block specification) is
interoperability with other implementations.

Low level bindings for full content (de)compression

These functions are bindings to the LZ4 Frame API functions for compressing data
into a single frame, and decompressing a full frame of data.

	
lz4.frame.compress()

	compress(data, compression_level=0, block_size=0, content_checksum=0,
block_linked=True, store_size=True, return_bytearray=False)

Compresses data returning the compressed data as a complete frame.

The returned data includes a header and endmark and so is suitable
for writing to a file.

	Parameters

	data (str, bytes or buffer-compatible object) – data to compress

	Keyword Arguments

	
	block_size (int) – Sepcifies the maximum blocksize to use.
Options:

	lz4.frame.BLOCKSIZE_DEFAULT: the lz4 library default

	lz4.frame.BLOCKSIZE_MAX64KB: 64 kB

	lz4.frame.BLOCKSIZE_MAX256KB: 256 kB

	lz4.frame.BLOCKSIZE_MAX1MB: 1 MB

	lz4.frame.BLOCKSIZE_MAX4MB: 4 MB

If unspecified, will default to lz4.frame.BLOCKSIZE_DEFAULT
which is currently equal to lz4.frame.BLOCKSIZE_MAX64KB.

	block_linked (bool) – Specifies whether to use block-linked
compression. If True, the compression ratio is improved,
particularly for small block sizes. Default is True.

	compression_level (int) – Specifies the level of compression used.
Values between 0-16 are valid, with 0 (default) being the
lowest compression (0-2 are the same value), and 16 the highest.
Values below 0 will enable “fast acceleration”, proportional
to the value. Values above 16 will be treated as 16.
The following module constants are provided as a convenience:

	lz4.frame.COMPRESSIONLEVEL_MIN: Minimum compression (0, the
default)

	lz4.frame.COMPRESSIONLEVEL_MINHC: Minimum high-compression
mode (3)

	lz4.frame.COMPRESSIONLEVEL_MAX: Maximum compression (16)

	content_checksum (bool) – Specifies whether to enable checksumming
of the uncompressed content. If True, a checksum is stored at the
end of the frame, and checked during decompression. Default is
False.

	block_checksum (bool) – Specifies whether to enable checksumming of
the uncompressed content of each block. If True a checksum of
the uncompressed data in each block in the frame is stored at

the end of each block. If present, these checksums will be used

to validate the data during decompression. The default is
False meaning block checksums are not calculated and stored.
This functionality is only supported if the underlying LZ4
library has version >= 1.8.0. Attempting to set this value
to True with a version of LZ4 < 1.8.0 will cause a
RuntimeError to be raised.

	return_bytearray (bool) – If True a bytearray object will be
returned. If False, a string of bytes is returned. The default
is False.

	store_size (bool) – If True then the frame will include an 8-byte
header field that is the uncompressed size of data included
within the frame. Default is True.

	Returns

	Compressed data

	Return type

	bytes or bytearray

	
lz4.frame.decompress(data, return_bytearray=False, return_bytes_read=False)

	Decompresses a frame of data and returns it as a string of bytes.

	Parameters

	data (str, bytes or buffer-compatible object) – data to decompress.
This should contain a complete LZ4 frame of compressed data.

	Keyword Arguments

	
	return_bytearray (bool) – If True a bytearray object will be
returned. If False, a string of bytes is returned. The
default is False.

	return_bytes_read (bool) – If True then the number of bytes read
from data will also be returned. Default is False

	Returns

	Uncompressed data and optionally the number of bytes read

If the return_bytes_read argument is True this function
returns a tuple consisting of:

	bytes or bytearray: Uncompressed data

	int: Number of bytes consumed from data

	Return type

	bytes/bytearray or tuple

Low level bindings for chunked content (de)compression

These functions are bindings to the LZ4 Frame API functions allowing piece-wise
compression and decompression. Using them requires managing compression and
decompression contexts manually. An alternative to using these is to use the
context manager classes described in the section below.

Compression

	
lz4.frame.create_compression_context()

	Creates a compression context object.

The compression object is required for compression operations.

	Returns

	A compression context

	Return type

	cCtx

	
lz4.frame.compress_begin()

	compress_begin(context, source_size=0, compression_level=0, block_size=0,
content_checksum=0, content_size=1, block_linked=0, frame_type=0,
auto_flush=1)

Creates a frame header from a compression context.

	Parameters

	context (cCtx) – A compression context.

	Keyword Arguments

	
	block_size (int) – Sepcifies the maximum blocksize to use.
Options:

	lz4.frame.BLOCKSIZE_DEFAULT: the lz4 library default

	lz4.frame.BLOCKSIZE_MAX64KB: 64 kB

	lz4.frame.BLOCKSIZE_MAX256KB: 256 kB

	lz4.frame.BLOCKSIZE_MAX1MB: 1 MB

	lz4.frame.BLOCKSIZE_MAX4MB: 4 MB

If unspecified, will default to lz4.frame.BLOCKSIZE_DEFAULT
which is currently equal to lz4.frame.BLOCKSIZE_MAX64KB.

	block_linked (bool) – Specifies whether to use block-linked
compression. If True, the compression ratio is improved,
particularly for small block sizes. Default is True.

	compression_level (int) – Specifies the level of compression used.
Values between 0-16 are valid, with 0 (default) being the
lowest compression (0-2 are the same value), and 16 the highest.
Values below 0 will enable “fast acceleration”, proportional
to the value. Values above 16 will be treated as 16.
The following module constants are provided as a convenience:

	lz4.frame.COMPRESSIONLEVEL_MIN: Minimum compression (0, the
default)

	lz4.frame.COMPRESSIONLEVEL_MINHC: Minimum high-compression
mode (3)

	lz4.frame.COMPRESSIONLEVEL_MAX: Maximum compression (16)

	content_checksum (bool) – Specifies whether to enable checksumming
of the uncompressed content. If True, a checksum is stored at the
end of the frame, and checked during decompression. Default is
False.

	block_checksum (bool) – Specifies whether to enable checksumming of
the uncompressed content of each block. If True a checksum of
the uncompressed data in each block in the frame is stored at

the end of each block. If present, these checksums will be used

to validate the data during decompression. The default is
False meaning block checksums are not calculated and stored.
This functionality is only supported if the underlying LZ4
library has version >= 1.8.0. Attempting to set this value
to True with a version of LZ4 < 1.8.0 will cause a
RuntimeError to be raised.

	return_bytearray (bool) – If True a bytearray object will be
returned. If False, a string of bytes is returned. The default
is False.

	auto_flush (bool) – Enable or disable autoFlush. When autoFlush is disabled
the LZ4 library may buffer data internally until a block is full.
Default is False (autoFlush disabled).

	source_size (int) – This optionally specifies the uncompressed size
of the data to be compressed. If specified, the size will be stored
in the frame header for use during decompression. Default is True

	return_bytearray – If True a bytearray object will be returned.
If False, a string of bytes is returned. Default is False.

	Returns

	Frame header.

	Return type

	bytes or bytearray

	
lz4.frame.compress_chunk(context, data)

	Compresses blocks of data and returns the compressed data.

The returned data should be concatenated with the data returned from
lz4.frame.compress_begin and any subsequent calls to
lz4.frame.compress_chunk.

	Parameters

	
	context (cCtx) – compression context

	data (str, bytes or buffer-compatible object) – data to compress

	Keyword Arguments

	return_bytearray (bool) – If True a bytearray object will be
returned. If False, a string of bytes is returned. The
default is False.

	Returns

	Compressed data.

	Return type

	bytes or bytearray

Notes

If auto flush is disabled (auto_flush=False when calling
lz4.frame.compress_begin) this function may buffer and retain
some or all of the compressed data for future calls to
lz4.frame.compress.

	
lz4.frame.compress_flush(context, end_frame=True, return_bytearray=False)

	Flushes any buffered data held in the compression context.

This flushes any data buffed in the compression context, returning it as
compressed data. The returned data should be appended to the output of
previous calls to lz4.frame.compress_chunk.

The end_frame argument specifies whether or not the frame should be
ended. If this is True and end of frame marker will be appended to
the returned data. In this case, if content_checksum was True
when calling lz4.frame.compress_begin, then a checksum of the uncompressed
data will also be included in the returned data.

If the end_frame argument is True, the compression context will be
reset and can be re-used.

	Parameters

	context (cCtx) – Compression context

	Keyword Arguments

	
	end_frame (bool) – If True the frame will be ended. Default is
True.

	return_bytearray (bool) – If True a bytearray object will
be returned. If False, a bytes object is returned.
The default is False.

	Returns

	compressed data.

	Return type

	bytes or bytearray

Notes

If end_frame is False but the underlying LZ4 library does not support flushing without ending the frame, a RuntimeError will be
raised.

Decompression

	
lz4.frame.create_decompression_context()

	Creates a decompression context object.

A decompression context is needed for decompression operations.

	Returns

	A decompression context

	Return type

	dCtx

	
lz4.frame.reset_decompression_context(context)

	Resets a decompression context object.

This is useful for recovering from an error or for stopping an unfinished
decompression and starting a new one with the same context

	Parameters

	context (dCtx) – A decompression context

	
lz4.frame.decompress_chunk(context, data, max_length=-1)

	Decompresses part of a frame of compressed data.

The returned uncompressed data should be concatenated with the data
returned from previous calls to lz4.frame.decompress_chunk

	Parameters

	
	context (dCtx) – decompression context

	data (str, bytes or buffer-compatible object) – part of a LZ4
frame of compressed data

	Keyword Arguments

	
	max_length (int) – if non-negative this specifies the maximum number
of bytes of uncompressed data to return. Default is -1.

	return_bytearray (bool) – If True a bytearray object will be
returned.If False, a string of bytes is returned. The
default is False.

	Returns

	uncompressed data, bytes read, end of frame indicator

This function returns a tuple consisting of:

	The uncompressed data as a bytes or bytearray object

	The number of bytes consumed from input data as an int

	The end of frame indicator as a bool.

	Return type

	tuple

The end of frame indicator is True if the end of the compressed
frame has been reached, or False otherwise

Retrieving frame information

The following function can be used to retrieve information about a compressed frame.

	
lz4.frame.get_frame_info(frame)

	Given a frame of compressed data, returns information about the frame.

	Parameters

	frame (str, bytes or buffer-compatible object) – LZ4 compressed frame

	Returns

	Dictionary with keys:

	block_size (int): the maximum size (in bytes) of each block

	block_size_id (int): identifier for maximum block size

	
	content_checksum (bool): specifies whether the frame

	contains a checksum of the uncompressed content

	content_size (int): uncompressed size in bytes of
frame content

	block_linked (bool): specifies whether the frame contains
blocks which are independently compressed (False) or linked
linked (True)

	block_checksum (bool): specifies whether each block contains a
checksum of its contents

	skippable (bool): whether the block is skippable (True) or
not (False)

	Return type

	dict

Helper context manager classes

These classes, which utilize the low level bindings to the Frame API are more
convenient to use. They provide context management, and so it is not necessary
to manually create and manage compression and decompression contexts.

	
class lz4.frame.LZ4FrameCompressor(block_size=0, block_linked=True, compression_level=0, content_checksum=False, block_checksum=False, auto_flush=False, return_bytearray=False)

	Create a LZ4 frame compressor object.

This object can be used to compress data incrementally.

	Parameters

	
	block_size (int) – Specifies the maximum blocksize to use.
Options:

	lz4.frame.BLOCKSIZE_DEFAULT: the lz4 library default

	lz4.frame.BLOCKSIZE_MAX64KB: 64 kB

	lz4.frame.BLOCKSIZE_MAX256KB: 256 kB

	lz4.frame.BLOCKSIZE_MAX1MB: 1 MB

	lz4.frame.BLOCKSIZE_MAX4MB: 4 MB

If unspecified, will default to lz4.frame.BLOCKSIZE_DEFAULT which
is equal to lz4.frame.BLOCKSIZE_MAX64KB.

	block_linked (bool) – Specifies whether to use block-linked
compression. If True, the compression ratio is improved,
especially for small block sizes. If False the blocks are
compressed independently. The default is True.

	compression_level (int) – Specifies the level of compression used.
Values between 0-16 are valid, with 0 (default) being the
lowest compression (0-2 are the same value), and 16 the highest.
Values above 16 will be treated as 16.
Values between 4-9 are recommended. 0 is the default.
The following module constants are provided as a convenience:

	lz4.frame.COMPRESSIONLEVEL_MIN: Minimum compression (0)

	lz4.frame.COMPRESSIONLEVEL_MINHC: Minimum high-compression (3)

	lz4.frame.COMPRESSIONLEVEL_MAX: Maximum compression (16)

	content_checksum (bool) – Specifies whether to enable checksumming of
the payload content. If True, a checksum of the uncompressed
data is stored at the end of the compressed frame which is checked
during decompression. The default is False.

	block_checksum (bool) – Specifies whether to enable checksumming of
the content of each block. If True a checksum of the
uncompressed data in each block in the frame is stored at the end
of each block. If present, these checksums will be used to
validate the data during decompression. The default is False,
meaning block checksums are not calculated and stored. This
functionality is only supported if the underlying LZ4 library has
version >= 1.8.0. Attempting to set this value to True with a
version of LZ4 < 1.8.0 will cause a RuntimeError to be raised.

	auto_flush (bool) – When False, the LZ4 library may buffer data
until a block is full. When True no buffering occurs, and
partially full blocks may be returned. The default is False.

	return_bytearray (bool) – When False a bytes object is returned
from the calls to methods of this class. When True a
bytearray object will be returned. The default is False.

	
begin(source_size=0)

	Begin a compression frame.

The returned data contains frame header information. The data returned
from subsequent calls to compress() should be concatenated with
this header.

	Keyword Arguments

	source_size (int) – Optionally specify the total size of the
uncompressed data. If specified, will be stored in the
compressed frame header as an 8-byte field for later use
during decompression. Default is 0 (no size stored).

	Returns

	frame header data

	Return type

	bytes or bytearray

	
compress(data)

	Compresses data and returns it.

This compresses data (a bytes object), returning a bytes or
bytearray object containing compressed data the input.

If auto_flush has been set to False, some of data may be
buffered internally, for use in later calls to
LZ4FrameCompressor.compress() and LZ4FrameCompressor.flush().

The returned data should be concatenated with the output of any
previous calls to compress() and a single call to
compress_begin().

	Parameters

	data (str, bytes or buffer-compatible object) – data to compress

	Returns

	compressed data

	Return type

	bytes or bytearray

	
flush()

	Finish the compression process.

This returns a bytes or bytearray object containing any data
stored in the compressor’s internal buffers and a frame footer.

The LZ4FrameCompressor instance may be re-used after this method has
been called to create a new frame of compressed data.

	Returns

	compressed data and frame footer.

	Return type

	bytes or bytearray

	
has_context()

	Return whether the compression context exists.

	Returns

	
	True if the compression context exists, False

	otherwise.

	Return type

	bool

	
reset()

	Reset the LZ4FrameCompressor instance.

This allows the LZ4FrameCompression instance to be re-used after an
error.

	
started()

	Return whether the compression frame has been started.

	Returns

	
	True if the compression frame has been started, False

	otherwise.

	Return type

	bool

	
class lz4.frame.LZ4FrameDecompressor(return_bytearray=False)

	Create a LZ4 frame decompressor object.

This can be used to decompress data incrementally.

For a more convenient way of decompressing an entire compressed frame at
once, see lz4.frame.decompress().

	Parameters

	return_bytearray (bool) – When False a bytes object is returned from
the calls to methods of this class. When True a bytearray
object will be returned. The default is False.

	
eof

	True if the end-of-stream marker has been reached.
False otherwise.

	Type

	bool

	
unused_data

	Data found after the end of the compressed stream.
Before the end of the frame is reached, this will be b''.

	Type

	bytes

	
needs_input

	False if the decompress() method can
provide more decompressed data before requiring new uncompressed
input. True otherwise.

	Type

	bool

	
decompress(data, max_length=-1)

	Decompresses part or all of an LZ4 frame of compressed data.

The returned data should be concatenated with the output of any
previous calls to decompress().

If max_length is non-negative, returns at most max_length bytes
of decompressed data. If this limit is reached and further output can
be produced, the needs_input attribute will be set to False. In
this case, the next call to decompress() may provide data as
b'' to obtain more of the output. In all cases, any unconsumed data
from previous calls will be prepended to the input data.

If all of the input data was decompressed and returned (either
because this was less than max_length bytes, or because
max_length was negative), the needs_input attribute will be set
to True.

If an end of frame marker is encountered in the data during
decompression, decompression will stop at the end of the frame, and any
data after the end of frame is available from the unused_data
attribute. In this case, the LZ4FrameDecompressor instance is reset
and can be used for further decompression.

	Parameters

	data (str, bytes or buffer-compatible object) – compressed data to
decompress

	Keyword Arguments

	max_length (int) – If this is non-negative, this method returns at
most max_length bytes of decompressed data.

	Returns

	Uncompressed data

	Return type

	bytes

	
reset()

	Reset the decompressor state.

This is useful after an error occurs, allowing re-use of the instance.

Reading and writing compressed files

These provide capability for reading and writing of files using LZ4 compressed
frames. These are designed to be drop in replacements for the LZMA, BZ2 and Gzip
equivalent functionalities in the Python standard library.

	
lz4.frame.open(filename, mode='rb', encoding=None, errors=None, newline=None, block_size=0, block_linked=True, compression_level=0, content_checksum=False, block_checksum=False, auto_flush=False, return_bytearray=False, source_size=0)

	Open an LZ4Frame-compressed file in binary or text mode.

filename can be either an actual file name (given as a str, bytes, or
PathLike object), in which case the named file is opened, or it can be an
existing file object to read from or write to.

The mode argument can be 'r', 'rb' (default), 'w',
'wb', 'x', 'xb', 'a', or 'ab' for binary mode, or
'rt', 'wt', 'xt', or 'at' for text mode.

For binary mode, this function is equivalent to the LZ4FrameFile
constructor: LZ4FrameFile(filename, mode, ...).

For text mode, an LZ4FrameFile object is created, and wrapped in an
io.TextIOWrapper instance with the specified encoding, error handling
behavior, and line ending(s).

	Parameters

	filename (str, bytes, os.PathLike) – file name or file object to open

	Keyword Arguments

	
	mode (str) – mode for opening the file

	encoding (str) – the name of the encoding that will be used for
encoding/deconging the stream. It defaults to
locale.getpreferredencoding(False). See io.TextIOWrapper
for further details.

	errors (str) – specifies how encoding and decoding errors are to be
handled. See io.TextIOWrapper for further details.

	newline (str) – controls how line endings are handled. See
io.TextIOWrapper for further details.

	return_bytearray (bool) – When False a bytes object is returned
from the calls to methods of this class. When True a bytearray
object will be returned. The default is False.

	source_size (int) – Optionally specify the total size of the
uncompressed data. If specified, will be stored in the compressed
frame header as an 8-byte field for later use during decompression.
Default is 0 (no size stored). Only used for writing compressed
files.

	block_size (int) – Compressor setting. See
lz4.frame.LZ4FrameCompressor.

	block_linked (bool) – Compressor setting. See
lz4.frame.LZ4FrameCompressor.

	compression_level (int) – Compressor setting. See
lz4.frame.LZ4FrameCompressor.

	content_checksum (bool) – Compressor setting. See
lz4.frame.LZ4FrameCompressor.

	block_checksum (bool) – Compressor setting. See
lz4.frame.LZ4FrameCompressor.

	auto_flush (bool) – Compressor setting. See
lz4.frame.LZ4FrameCompressor.

	
class lz4.frame.LZ4FrameFile(filename=None, mode='r', block_size=0, block_linked=True, compression_level=0, content_checksum=False, block_checksum=False, auto_flush=False, return_bytearray=False, source_size=0)

	A file object providing transparent LZ4F (de)compression.

An LZ4FFile can act as a wrapper for an existing file object, or refer
directly to a named file on disk.

Note that LZ4FFile provides a binary file interface - data read is
returned as bytes, and data to be written must be given as bytes.

When opening a file for writing, the settings used by the compressor can be
specified. The underlying compressor object is
lz4.frame.LZ4FrameCompressor. See the docstrings for that class for
details on compression options.

	Parameters

	filename (str, bytes, PathLike, file object) – can be either an actual
file name (given as a str, bytes, or
PathLike object), in which case the named file is opened, or it
can be an existing file object to read from or write to.

	Keyword Arguments

	
	mode (str) – mode can be 'r' for reading (default), 'w' for
(over)writing, 'x' for creating exclusively, or 'a'
for appending. These can equivalently be given as 'rb',
'wb', 'xb' and 'ab' respectively.

	return_bytearray (bool) – When False a bytes object is returned from
the calls to methods of this class. When True a bytearray
object will be returned. The default is False.

	source_size (int) – Optionally specify the total size of the
uncompressed data. If specified, will be stored in the compressed
frame header as an 8-byte field for later use during decompression.
Default is 0 (no size stored). Only used for writing
compressed files.

	block_size (int) – Compressor setting. See
lz4.frame.LZ4FrameCompressor.

	block_linked (bool) – Compressor setting. See
lz4.frame.LZ4FrameCompressor.

	compression_level (int) – Compressor setting. See
lz4.frame.LZ4FrameCompressor.

	content_checksum (bool) – Compressor setting. See
lz4.frame.LZ4FrameCompressor.

	block_checksum (bool) – Compressor setting. See
lz4.frame.LZ4FrameCompressor.

	auto_flush (bool) – Compressor setting. See
lz4.frame.LZ4FrameCompressor.

	
close()

	Flush and close the file.

May be called more than once without error. Once the file is
closed, any other operation on it will raise a ValueError.

	
closed

	Returns True if this file is closed.

	Returns

	True if the file is closed, False otherwise.

	Return type

	bool

	
fileno()

	Return the file descriptor for the underlying file.

	Returns

	file descriptor for file.

	Return type

	file object

	
flush()

	Flush the file, keeping it open.

May be called more than once without error. The file may continue
to be used normally after flushing.

	
peek(size=-1)

	Return buffered data without advancing the file position.

Always returns at least one byte of data, unless at EOF. The exact
number of bytes returned is unspecified.

	Returns

	uncompressed data

	Return type

	bytes

	
read(size=-1)

	Read up to size uncompressed bytes from the file.

If size is negative or omitted, read until EOF is reached.
Returns b'' if the file is already at EOF.

	Parameters

	size (int) – If non-negative, specifies the maximum number of
uncompressed bytes to return.

	Returns

	uncompressed data

	Return type

	bytes

	
read1(size=-1)

	Read up to size uncompressed bytes.

This method tries to avoid making multiple reads from the underlying
stream.

This method reads up to a buffer’s worth of data if size is
negative.

Returns b'' if the file is at EOF.

	Parameters

	size (int) – If non-negative, specifies the maximum number of
uncompressed bytes to return.

	Returns

	uncompressed data

	Return type

	bytes

	
readable()

	Return whether the file was opened for reading.

	Returns

	
	True if the file was opened for reading, False

	otherwise.

	Return type

	bool

	
readline(size=-1)

	Read a line of uncompressed bytes from the file.

The terminating newline (if present) is retained. If size is
non-negative, no more than size bytes will be read (in which case the
line may be incomplete). Returns b’’ if already at EOF.

	Parameters

	size (int) – If non-negative, specifies the maximum number of
uncompressed bytes to return.

	Returns

	uncompressed data

	Return type

	bytes

	
seek(offset, whence=0)

	Change the file position.

The new position is specified by offset, relative to the position
indicated by whence. Possible values for whence are:

	io.SEEK_SET or 0: start of stream (default): offset must not be
negative

	io.SEEK_CUR or 1: current stream position

	io.SEEK_END or 2: end of stream; offset must not be positive

Returns the new file position.

Note that seeking is emulated, so depending on the parameters, this
operation may be extremely slow.

	Parameters

	
	offset (int) – new position in the file

	whence (int) – position with which offset is measured. Allowed
values are 0, 1, 2. The default is 0 (start of stream).

	Returns

	new file position

	Return type

	int

	
seekable()

	Return whether the file supports seeking.

	Returns

	True if the file supports seeking, False otherwise.

	Return type

	bool

	
tell()

	Return the current file position.

	Parameters

	None –

	Returns

	file position

	Return type

	int

	
writable()

	Return whether the file was opened for writing.

	Returns

	
	True if the file was opened for writing, False

	otherwise.

	Return type

	bool

	
write(data)

	Write a bytes object to the file.

Returns the number of uncompressed bytes written, which is
always the length of data in bytes. Note that due to buffering,
the file on disk may not reflect the data written until close()
is called.

	Parameters

	data (bytes) – uncompressed data to compress and write to the file

	Returns

	the number of uncompressed bytes written to the file

	Return type

	int

Module attributes

A number of module attributes are defined for convenience. These are detailed below.

Compression level

The following module attributes can be used when setting the
compression_level argument.

	
lz4.frame.COMPRESSIONLEVEL_MIN

	Specifier for the minimum compression level.

Specifying compression_level=lz4.frame.COMPRESSIONLEVEL_MIN will
instruct the LZ4 library to use a compression level of 0

	
lz4.frame.COMPRESSIONLEVEL_MINHC

	Specifier for the minimum compression level for high compression mode.

Specifying compression_level=lz4.frame.COMPRESSIONLEVEL_MINHC will
instruct the LZ4 library to use a compression level of 3, the minimum for the
high compression mode.

	
lz4.frame.COMPRESSIONLEVEL_MAX

	Specifier for the maximum compression level.

Specifying compression_level=lz4.frame.COMPRESSIONLEVEL_MAX will
instruct the LZ4 library to use a compression level of 16, the highest
compression level available.

Block size

The following attributes can be used when setting the block_size argument.

	
lz4.frame.BLOCKSIZE_DEFAULT

	Specifier for the default block size.

Specifying block_size=lz4.frame.BLOCKSIZE_DEFAULT will instruct the LZ4
library to use the default maximum blocksize. This is currently equivalent to
lz4.frame.BLOCKSIZE_MAX64KB

	
lz4.frame.BLOCKSIZE_MAX64KB

	Specifier for a maximum block size of 64 kB.

Specifying block_size=lz4.frame.BLOCKSIZE_MAX64KB will instruct the LZ4
library to create blocks containing a maximum of 64 kB of uncompressed data.

	
lz4.frame.BLOCKSIZE_MAX256KB

	Specifier for a maximum block size of 256 kB.

Specifying block_size=lz4.frame.BLOCKSIZE_MAX256KB will instruct the LZ4
library to create blocks containing a maximum of 256 kB of uncompressed data.

	
lz4.frame.BLOCKSIZE_MAX1MB

	Specifier for a maximum block size of 1 MB.

Specifying block_size=lz4.frame.BLOCKSIZE_MAX1MB will instruct the LZ4
library to create blocks containing a maximum of 1 MB of uncompressed data.

	
lz4.frame.BLOCKSIZE_MAX4MB

	Specifier for a maximum block size of 4 MB.

Specifying block_size=lz4.frame.BLOCKSIZE_MAX4MB will instruct the LZ4
library to create blocks containing a maximum of 4 MB of uncompressed data.

lz4.block sub-package

This sub-package provides the capability to compress and decompress data using
the block specification [https://lz4.github.io/lz4/lz4_Block_format.html].

Because the LZ4 block format doesn’t define a container format, the
Python bindings will by default insert the original data size as an
integer at the start of the compressed payload. However, it is
possible to disable this functionality, and you may wish to do so for
compatibility with other language bindings, such as the Java bindings [https://github.com/lz4/lz4-java].

Example usage

To use the lz4 block format bindings is straightforward:

>>> import lz4.block
>>> import os
>>> input_data = 20 * 128 * os.urandom(1024) # Read 20 * 128kb
>>> compressed_data = lz4.block.compress(input_data)
>>> output_data = lz4.block.decompress(compressed_data)
>>> input_data == output_data
True

In this simple example, the size of the uncompressed data is stored in
the compressed data, and this size is then utilized when uncompressing
the data in order to correctly size the buffer. Instead, you may want
to not store the size of the uncompressed data to ensure compatibility
with the Java bindings [https://github.com/lz4/lz4-java]. The
example below demonstrates how to use the block format without storing
the size of the uncompressed data.

>>> import lz4.block
>>> data = b'0' * 255
>>> compressed = lz4.block.compress(data, store_size=False)
>>> decompressed = lz4.block.decompress(compressed, uncompressed_size=255)
>>> decompressed == data
True

The uncompressed_size argument specifies an upper bound on the size
of the uncompressed data size rather than an absolute value, such that
the following example also works.

>>> import lz4.block
>>> data = b'0' * 255
>>> compressed = lz4.block.compress(data, store_size=False)
>>> decompressed = lz4.block.decompress(compressed, uncompressed_size=2048)
>>> decompressed == data
True

A common situation is not knowing the size of the uncompressed data at
decompression time. The following example illustrates a strategy that
can be used in this case.

>>> import lz4.block
>>> data = b'0' * 2048
>>> compressed = lz4.block.compress(data, store_size=False)
>>> usize = 255
>>> max_size = 4096
>>> while True:
... try:
... decompressed = lz4.block.decompress(compressed, uncompressed_size=usize)
... break
... except lz4.block.LZ4BlockError:
... usize *= 2
... if usize > max_size:
... print('Error: data too large or corrupt')
... break
>>> decompressed == data
True

In this example we are catching the lz4.block.LZ4BlockError
exception. This exception is raisedd if the LZ4 library call fails,
which can be caused by either the buffer used to store the
uncompressed data (as set by usize) being too small, or the input
compressed data being invalid - it is not possible to distinguish the
two cases, and this is why we set an absolute upper bound (max_size)
on the memory that can be allocated for the uncompressed data. If we
did not take this precaution, the code, if ppassed invalid compressed
data would continuously try to allocate a larger and larger buffer for
decompression until the system ran out of memory.

Contents

	
lz4.block.compress(source, mode='default', acceleration=1, compression=0, return_bytearray=False)

	Compress source, returning the compressed data as a string.
Raises an exception if any error occurs.

	Parameters

	source (str, bytes or buffer-compatible object) – Data to compress

	Keyword Arguments

	
	mode (str) – If 'default' or unspecified use the default LZ4
compression mode. Set to 'fast' to use the fast compression
LZ4 mode at the expense of compression. Set to
'high_compression' to use the LZ4 high-compression mode at
the exepense of speed.

	acceleration (int) – When mode is set to 'fast' this argument
specifies the acceleration. The larger the acceleration, the
faster the but the lower the compression. The default
compression corresponds to a value of 1.

	compression (int) – When mode is set to high_compression this
argument specifies the compression. Valid values are between
1 and 12. Values between 4-9 are recommended, and
9 is the default.

	store_size (bool) – If True (the default) then the size of the
uncompressed data is stored at the start of the compressed
block.

	return_bytearray (bool) – If False (the default) then the function
will return a bytes object. If True, then the function will
return a bytearray object.

	dict (str, bytes or buffer-compatible object) – If specified, perform
compression using this initial dictionary.

	Returns

	Compressed data.

	Return type

	bytes or bytearray

	
lz4.block.decompress(source, uncompressed_size=-1, return_bytearray=False)

	Decompress source, returning the uncompressed data as a string.
Raises an exception if any error occurs.

	Parameters

	source (str, bytes or buffer-compatible object) – Data to decompress.

	Keyword Arguments

	
	uncompressed_size (int) – If not specified or negative, the uncompressed
data size is read from the start of the source block. If specified,
it is assumed that the full source data is compressed data. If this
argument is specified, it is considered to be a maximum possible size
for the buffer used to hold the uncompressed data, and so less data
may be returned. If uncompressed_size is too small, LZ4BlockError
will be raised. By catching LZ4BlockError it is possible to increase
uncompressed_size and try again.

	return_bytearray (bool) – If False (the default) then the function
will return a bytes object. If True, then the function will
return a bytearray object.

	dict (str, bytes or buffer-compatible object) – If specified, perform
decompression using this initial dictionary.

	Returns

	Decompressed data.

	Return type

	bytes or bytearray

	Raises

	LZ4BlockError – raised if the call to the LZ4 library fails. This can be
caused by uncompressed_size being too small, or invalid data.

lz4.stream sub-package

Warning

This module is unmaintained.

This sub-package is considered experimental. It was submitted by a community
member who is not able to continue to maintain the module.

This module is not built as part of the distributed wheels. If you wish to
build and use this module you will need to download and build from source
with the environment variable PYLZ4_EXPERIMENTAL set to TRUE.

The module needs some re-write, and the tests need extensive work, for this
to become production ready. If you are interested in working on this, please
reach out to the package maintainers.

This sub-package provides the capability to compress and decompress data using
the stream specification [https://github.com/lz4/lz4/blob/master/examples/streaming_api_basics.md],
especially the stream specification based on a double buffer [https://github.com/lz4/lz4/blob/master/examples/blockStreaming_doubleBuffer.md].

Because the LZ4 stream format does not define a container format, the
Python bindings will by default insert the compressed data size as an
integer at the start of the compressed payload. However, it is
possible to set the bit depth of this compressed data size.

So far, only the double-buffer based approach is implemented.

Example usage

To use the lz4 stream format bindings is straightforward:

>>> from lz4.stream import LZ4StreamCompressor, LZ4StreamDecompressor
>>> import os
>>> block_size_length = 2 # LZ4 compressed block size stored on 2 bytes
>>> page_size = 8192 # LZ4 context double buffer page size
>>> origin_stream = 10 * 1024 * os.urandom(1024) # 10MiB
>>> # LZ4 stream compression of origin_stream into compressed_stream:
>>> compressed_stream = bytearray()
>>> with LZ4StreamCompressor("double_buffer", page_size, store_comp_size=block_size_length) as proc:
... offset = 0
... while offset < len(origin_stream):
... chunk = origin_stream[offset:offset + page_size]
... block = proc.compress(chunk)
... compressed_stream.extend(block)
... offset += page_size
>>> # LZ4 stream decompression of compressed_stream into decompressed_stream:
>>> decompressed_stream = bytearray()
>>> with LZ4StreamDecompressor("double_buffer", page_size, store_comp_size=block_size_length) as proc:
... offset = 0
... while offset < len(compressed_stream):
... block = proc.get_block(compressed_stream[offset:])
... chunk = proc.decompress(block)
... decompressed_stream.extend(chunk)
... offset += block_size_length + len(block)
>>> decompressed_stream == origin_stream
True

Out-of-band block size record example

>>> from lz4.stream import LZ4StreamCompressor, LZ4StreamDecompressor
>>> import os
>>> page_size = 8192 # LZ4 context double buffer page size
>>> out_of_band_block_sizes = [] # Store the block sizes
>>> origin_stream = 10 * 1024 * os.urandom(1024) # 10MiB
>>> # LZ4 stream compression of origin_stream into compressed_stream:
>>> compressed_stream = bytearray()
>>> with LZ4StreamCompressor("double_buffer", page_size, store_comp_size=0) as proc:
... offset = 0
... while offset < len(origin_stream):
... chunk = origin_stream[offset:offset + page_size]
... block = proc.compress(chunk)
... out_of_band_block_sizes.append(len(block))
... compressed_stream.extend(block)
... offset += page_size
>>> # LZ4 stream decompression of compressed_stream into decompressed_stream:
>>> decompressed_stream = bytearray()
>>> with LZ4StreamDecompressor("double_buffer", page_size, store_comp_size=0) as proc:
... offset = 0
... for block_len in out_of_band_block_sizes:
... # Sanity check:
... if offset >= len(compressed_stream):
... raise LZ4StreamError("Truncated stream")
... block = compressed_stream[offset:offset + block_len]
... chunk = proc.decompress(block)
... decompressed_stream.extend(chunk)
... offset += block_len
>>> decompressed_stream == origin_stream
True

Contents

Contributors

	Jonathan Underwood combined the block and frame modules into a coherent single
project with many fixes, clean-ups and documentation

	Jonathan Underwood added frame bindings based on the lz4ex [https://github.com/jerryryle/python-lz4ex] by Jerry Ryle and the lz4tools [https://github.com/darkdragn/lz4tools] project by Christopher Jackson

	Jonathan Underwood updated the block format support to use the tunable
accelerated and high compression functions

	Mathew Rocklin added support for dropping the GIL to the block
module, and Travis testing support

	Antoine Martin added initial support for fast compression support to
the block library

	Steve Morin wrote the original lz4 block bindings

Licensing

Code specific to this project is covered by the BSD 3-Clause License [http://opensource.org/licenses/BSD-3-Clause]

 Python Module Index

 l

 		 	

 		
 l	

 	[image: -]
 	
 lz4	

 	
 	
 lz4.block	

 	
 	
 lz4.frame	

Index

 B
 | C
 | D
 | E
 | F
 | G
 | H
 | L
 | N
 | O
 | P
 | R
 | S
 | T
 | U
 | W

B

 	
 	begin() (lz4.frame.LZ4FrameCompressor method)

 	BLOCKSIZE_DEFAULT (in module lz4.frame)

 	BLOCKSIZE_MAX1MB (in module lz4.frame)

 	
 	BLOCKSIZE_MAX256KB (in module lz4.frame)

 	BLOCKSIZE_MAX4MB (in module lz4.frame)

 	BLOCKSIZE_MAX64KB (in module lz4.frame)

C

 	
 	close() (lz4.frame.LZ4FrameFile method)

 	closed (lz4.frame.LZ4FrameFile attribute)

 	compress() (in module lz4.block)

 	(in module lz4.frame)

 	(lz4.frame.LZ4FrameCompressor method)

 	compress_begin() (in module lz4.frame)

 	
 	compress_chunk() (in module lz4.frame)

 	compress_flush() (in module lz4.frame)

 	COMPRESSIONLEVEL_MAX (in module lz4.frame)

 	COMPRESSIONLEVEL_MIN (in module lz4.frame)

 	COMPRESSIONLEVEL_MINHC (in module lz4.frame)

 	create_compression_context() (in module lz4.frame)

 	create_decompression_context() (in module lz4.frame)

D

 	
 	decompress() (in module lz4.block)

 	(in module lz4.frame)

 	(lz4.frame.LZ4FrameDecompressor method)

 	
 	decompress_chunk() (in module lz4.frame)

E

 	
 	eof (lz4.frame.LZ4FrameDecompressor attribute)

F

 	
 	fileno() (lz4.frame.LZ4FrameFile method)

 	
 	flush() (lz4.frame.LZ4FrameCompressor method)

 	(lz4.frame.LZ4FrameFile method)

G

 	
 	get_frame_info() (in module lz4.frame)

H

 	
 	has_context() (lz4.frame.LZ4FrameCompressor method)

L

 	
 	library_version_number() (in module lz4)

 	library_version_string() (in module lz4)

 	lz4 (module)

 	lz4.block (module)

 	
 	lz4.frame (module)

 	LZ4FrameCompressor (class in lz4.frame)

 	LZ4FrameDecompressor (class in lz4.frame)

 	LZ4FrameFile (class in lz4.frame)

N

 	
 	needs_input (lz4.frame.LZ4FrameDecompressor attribute)

O

 	
 	open() (in module lz4.frame)

P

 	
 	peek() (lz4.frame.LZ4FrameFile method)

R

 	
 	read() (lz4.frame.LZ4FrameFile method)

 	read1() (lz4.frame.LZ4FrameFile method)

 	readable() (lz4.frame.LZ4FrameFile method)

 	
 	readline() (lz4.frame.LZ4FrameFile method)

 	reset() (lz4.frame.LZ4FrameCompressor method)

 	(lz4.frame.LZ4FrameDecompressor method)

 	reset_decompression_context() (in module lz4.frame)

S

 	
 	seek() (lz4.frame.LZ4FrameFile method)

 	
 	seekable() (lz4.frame.LZ4FrameFile method)

 	started() (lz4.frame.LZ4FrameCompressor method)

T

 	
 	tell() (lz4.frame.LZ4FrameFile method)

U

 	
 	unused_data (lz4.frame.LZ4FrameDecompressor attribute)

W

 	
 	writable() (lz4.frame.LZ4FrameFile method)

 	
 	write() (lz4.frame.LZ4FrameFile method)

 _static/ajax-loader.gif

_static/comment-close.png

_static/comment.png

_static/comment-bright.png

_static/down-pressed.png

_static/down.png

nav.xhtml

 Table of Contents

 		
 LZ4 compression library bindings for Python

 		
 Introduction

 		
 Install

 		
 Installing from pre-built wheels

 		
 Installing from source

 		
 Test suite

 		
 Documentation

 		
 Quickstart

 		
 Simple usage

 		
 Working with data in chunks

 		
 Working with compressed files

 		
 Controlling the compression

 		
 Controlling the compression level

 		
 Controlling the block size

 		
 Controlling block linking

 		
 Data checksum validation

 		
 Data buffering

 		
 Storing the uncompressed source data size in the frame

 		
 Working with streamed compressed data

 		
 Controlling the buffer size

 		
 Storing the compressed data size in the block

 		
 User Guide

 		
 lz4 package

 		
 Contents

 		
 lz4.frame sub-package

 		
 Low level bindings for full content (de)compression

 		
 Low level bindings for chunked content (de)compression

 		
 Retrieving frame information

 		
 Helper context manager classes

 		
 Reading and writing compressed files

 		
 Module attributes

 		
 lz4.block sub-package

 		
 Example usage

 		
 Contents

 		
 lz4.stream sub-package

 		
 Example usage

 		
 Out-of-band block size record example

 		
 Contents

 		
 Contributors

 		
 Licensing

_static/plus.png

_static/file.png

_static/minus.png

_static/up-pressed.png

_static/up.png

